Microbial Resources: Vital Infrastructure for Research and Extension Endeavors

Maria Auxilia T. Siringan auxie.nsri@gmail.com

Microbiological Research and Services Laboratory Natural Sciences Research Institute University of the Philippines, Diliman, Quezon City

Microbiological Research and Services Laboratory Natural Sciences Research Institute University of the Philippines-Diliman, Quezon City, Philippines

Vision

A nationally and internationally recognized vital microbial resource center

Mission

Providing quality technical expertise, services and microbial resources to a wide range of clients

Outline

Microorganisms: Resources for Research Metabolites for the industry

Microorganisms:

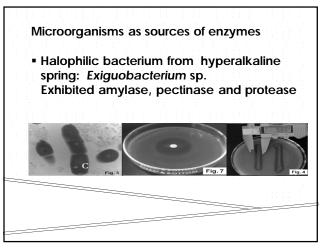
Resources for Extension/Technical Services As tools for assays and efficacy testing

Microorganisms: Resources for Research

Metabolites for the industry

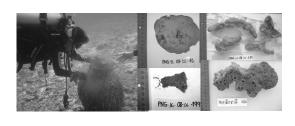
Research endeavors

Microbial diversity studies


- Exploring metabolic diversity for industrial applications
- Screening for useful metabolites

As sources of:

Enzymes


Biosurfactant

Bioactive compounds

Microorganisms as sources of biosurfactant

 Isolates were derived from marine sponges from different regions in the Philippines

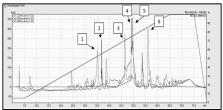
Microorganisms as sources of biosurfactant

Screening for biosurfactant production

Drop Collapse Test

Oil Displacement Test

Hemolysis Test

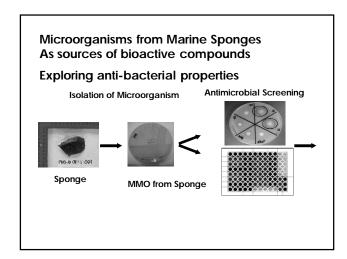

Microorganisms as sources of biosurfactant

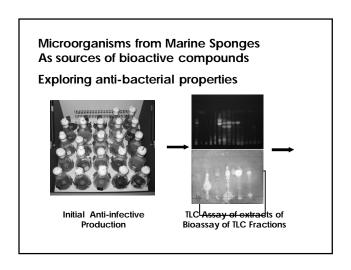
- Extracts of 6 microbial isolates
 Determination of TLC profile
 TLC bands Test for emulsification activity
- P. aeruginosa R2A 766B
 Best hemolytic activity
 Determination of HPLC profile

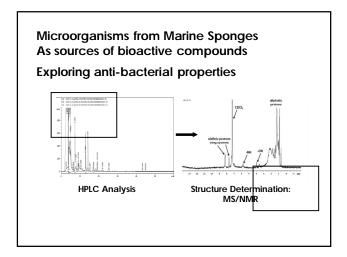
1 3	urfactant Activity
Identification	Isolate Code
Bacillus subtilis	R2A 515A
Gordonia sp.	EM 767A
Pseudomonas aeruginosa	ISP3 768A
Pseudomonas aeruginosa	R2A-766B
Pseudomonas stutzeri	R2A 709A
Pseudomonas stutzeri	R2A 685A

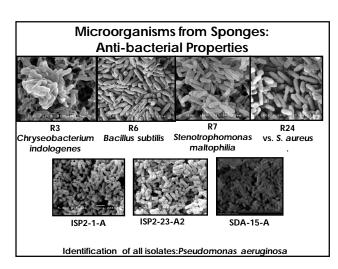
Microorganisms as sources of biosurfactant

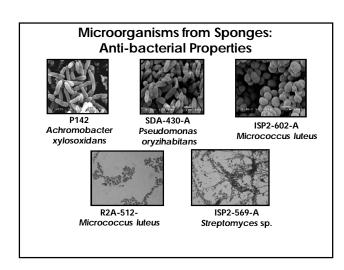
P. aeruginosa R2A 766B
 HPLC Profile of extract – 6 major peaks

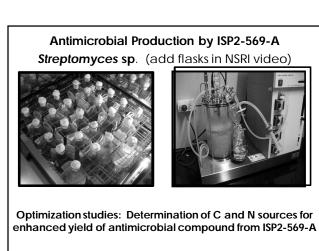


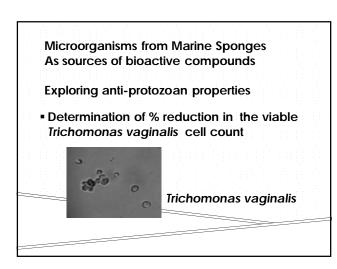

Bradford assay of R2A 766B biosurfactant: possibly a glycopeptide.


Microorganisms from Marine Sponges As sources of bioactive compounds


Exploring anti-bacterial properties


- Preliminary screening
 Disk diffusion assay
- Test organisms:
 Pseudomonas aeruginosa ATCC 12600
 Staphylococcus aureus ATCC 10145





Microorganisms from Sponges: Potential anti-protozoan compounds				
vs. Trichomonas vaginalis				
Sponge-derived MMOs	Isolate Code	Methanolic Extracts: Percent Kill of T. vaginalis (%)	Acetone Extracts: Percent Kill of T. vaginalis (%)	
Achromobacterxyloxosidans	P-142A-I-1-A	96.7	99.5	
Chryseobacterium indolegenes	P-046-I-1-A	97.2	95.7	
Micrococcus luteus	ISP2-602-A	98.1	99.1	
Penicillium griseofulvum	ISP2-576-A	99.3	99.8	
Pseudomonas aeruginosa	ISP2-1-A	100.0	98.0	
Pseudomonas aeruginosa	ISP2-23-A2	92.6	99.4	
Pseudomonas oryzihabitans	SDA-430-A	97.8	99.2	
Rhodoturula mucilaginosa	R2A-512-B	99.6	97.2	
Stenotrophomonas maltophila	P-203-I-1-A	98.0	99.1	
Streptomyces rubiginosohelvolus	ISP2-569-A	99.8	99.9	

Microorganisms: Resources for Extension and Technical Services

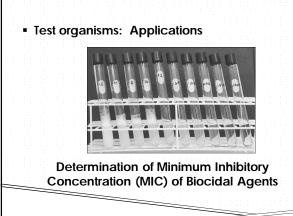
As tools for assays and efficacy testing

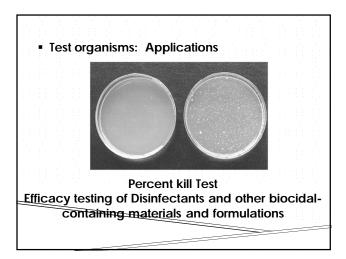
Extension and Technical Services

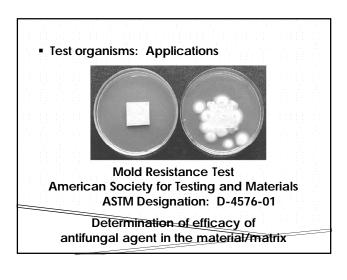
Test organisms - Tools for Efficacy Testing

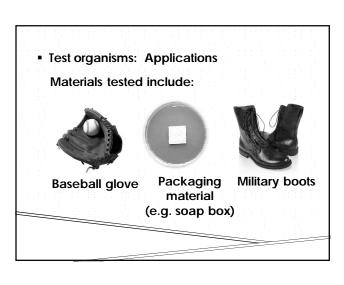
- For the evaluation of materials and products with biocidal agents
- For the evaluation of sterilization technology

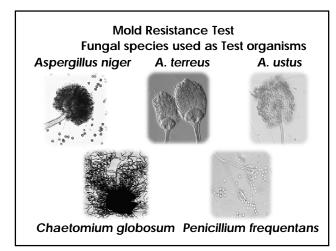
 Test organisms – most are ATCC cultures 		
	Accession Numbers	
Test Organisms		
Bacteria		
Bacillus subtilis	ATCC 6633	
Escherichia oli	ATCC 25922	
Pseudomonas aeruginosa	ATCC 15442; ATCC 27853	
Salmonella typhimurium	ATCC 14028	
Staphylococcus aureus	ATCC 6638; ATCC 29213	
Fungi		
Aspergillus niger		
Candida albicans	ATCC 10231	

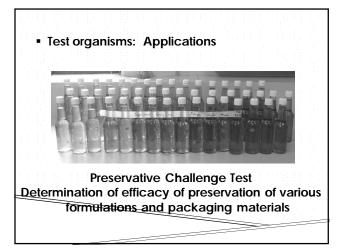

Trichophyton mentagrophytes UPCC 9533

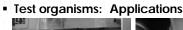

Test organisms: Applications


Antimicrobial Assay
Qualitative screening of natural and synthetic compounds


Antimicrobial assay of Moringa extract


Antimicrobial assay of an antibiotic formulation





Plasma Technology
As alternative sterilization procedure for food, packaging materials, & medical devices

Efficacy testing of plasma technology as sterilization procedure

Challenges and future directions

Sustainability of collection of microbial Cultures

Problem: Loss of cultures

Loss of activity in viable culture

Harnessing the potential of microorganisms Problem: Sustainability of endeavor

Major needs: Funds, facilities and equipment,

manpower

Future directions

- Upgrading microbial holdings
- Sustainable long-term preservation
 Upgrading of facilities to support culture collection
- Enhancing database
 Data generation:
 Phenotypic traits
 Genotypic traits

Useful genes through genome sequencing

- Capacity building
 - Training in key techniques used in microbial systematics
 - Training in metagenomics relevant to metabolite production