

Tropical biorefineries for energy and bio-products

Ian O'Hara
Theme Leader - Bioenergy
Centre for Tropical Crops and Biocommodities
Queensland University of Technology
Brisbane, Australia

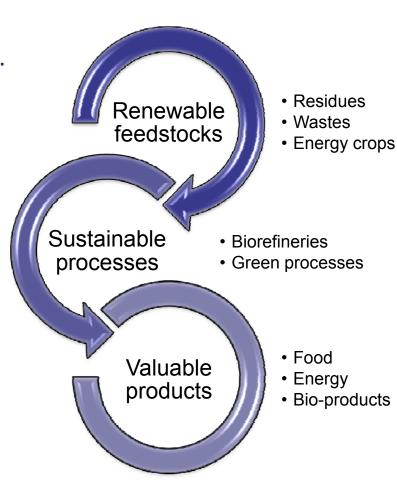
The world we live in...

Brisbane, Australia

Increasing scarcity (cost) of oil

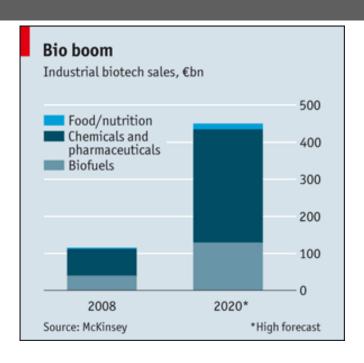
Consumer demand for 'green' products

Global warming


Rapid advances in biotechnology

The bio-economy...

- Bio-based products to a Bio-economy...
- Sustainable production and conversion of biomass to products including:
 - Food
 - Health
 - Fibre
 - Industrial
 - Energy


Key elements of the bio-economy

New industries...

- A rapidly growing industry…
 - US\$170 billion in 2008
 - US\$660 billion by 2020
- High levels of consumer demand...

	USA	China
Familiar with green products?	40%	40%
Confidence that green product is better for the environment	60%	70%
Would preferentially buy green product at a similar price	80%	75%

Building resilient regions...

Economic growth

Low carbon industries

Manufacturing base

Opportunity for regional communities

Profitable agriculture

Future prosperity

Resilience

Diversity

Social benefits

Long term sustainability

Tropical biorefinery feedstocks

Sugarcane...

- Sugarcane (Saccharum spp.)
 - Global sugarcane industry
 - Huge resource 1.6 billion tonnes
 - Established industrial crop
 - Sugar and electricity
 - Excellent biorefinery crop
 - Biomass Sustainable, large resource
 - Crop residue already at factory
 - Low value component of crop
 - Proven sustainability performance

Sweet sorghum...

- Sweet sorghum (Sorghum bicolor)
 - Highly productive, short rotation crop
 - Stalk syrup is used as a food sweetener
 - Grain used to produce gluten-free flour
 - Grain sorghum
 - 5th largest cereal crop globally
 - Compared to sugarcane, sweet sorghum:
 - Higher tolerance to salt and drought
 - Requires less water and fertiliser
 - Produces similar levels of biomass
 - Similar levels of total fermentable sugars

Left: sweet sorghum, Right: grain sorghum Source: Louisiana State University crop trials 2007-2008

Centre for Tropical Crops and Biocommodities

Agave...

- Agave tequiliana
 - Sugar and fibre rich crop
 - Sugar rich pina up to 80 kg
 - Pina sugar content up to 24%
 - High in fructans
 - Leaf up to 18 kg
 - Min 5 years from planting to harvest
 - Drought proof perennial
 - Reliability over 5 year growth
 - High water use efficiency
 - Grown on low value land

Cassava...

- Cassava (Manihot esculenta)
 - Good yields
 - High starch contents 20 30%
 - Third highest carbohydrate yield of crop plants
 - Multi-product
 - Starch to fuels / chemicals
 - Flour can be used in gluten free products
 - Fibrous stem
 - Foliage stock feed

Oil Palm...

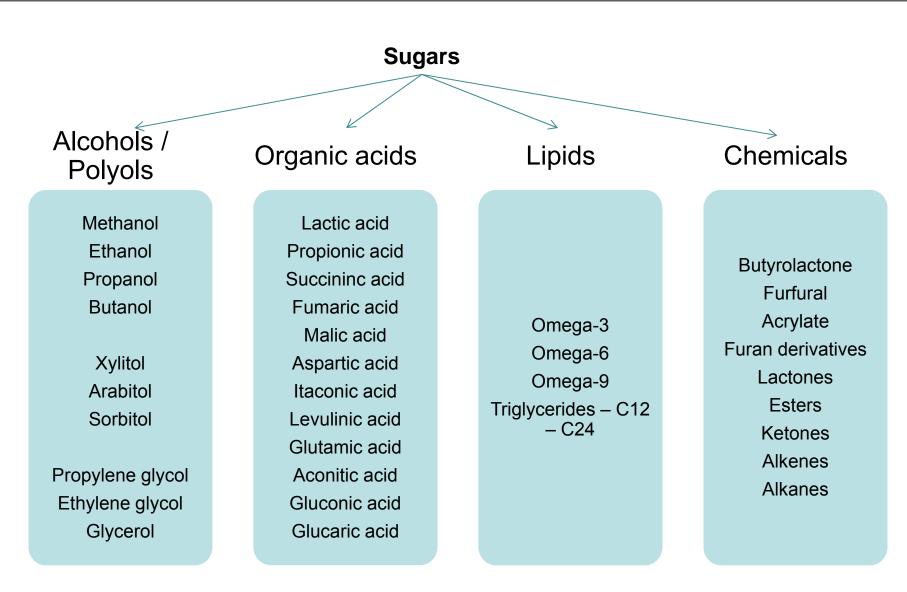
- Oil palm (Elaeis guineensis)
 - Multi-product crop
 - Oil rich fruit oleochemicals, fuels
 - Cellulosic waste residues
 - EFB and plantation wastes
 - Electricity and bio-products
 - Well established crop of significant importance in many tropical countries

Energy grasses...

- Napier grass (Pennisetum purpureum)
 - Perennial annual harvest
 - Minimal pests and diseases
 - Rapid growth and high biomass yields
 - Moderate sugar content but high in fibre
 - Use conventional sugarcane equipment for planting, harvesting, etc

Biorefinery products

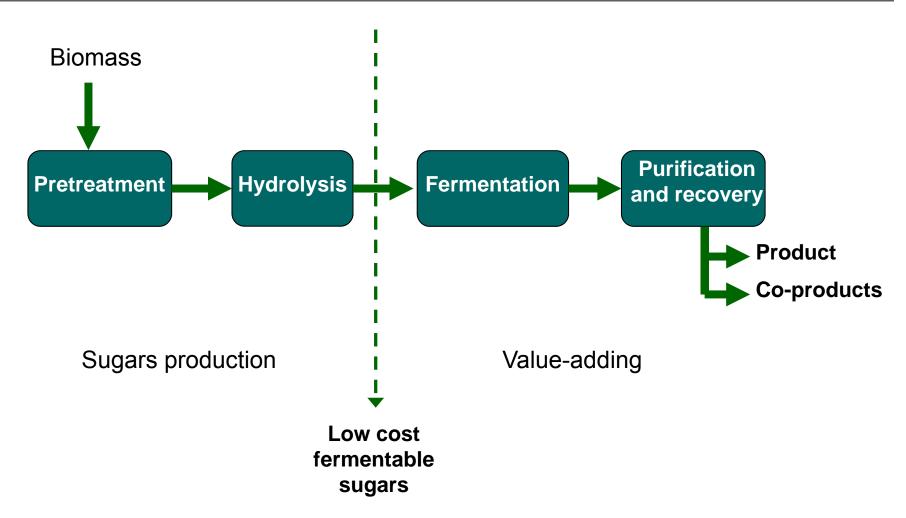
Bio-based products...


- Biofuels
 - Alcohols ethanol, methanol, butanol
 - Direct (drop-in) hydrocarbons
 - Oils & fatty acid based fuels
- Bioenergy
 - Combustion
 - Gasification
- Human and animal feed products
 - Livestock, feedlot, aquaculture
- Chemicals
- Biomaterials and biopolymers

Chemicals from sugars...

The rise of green packaging...

- Green polyethylene
 - Made from sugarcane ethanol in Brazil
 - HDPE, LDPE
 - eg Proctor & Gamble, Tetra Pak, Danone
- Coca-cola plantbottleTM
 - PET from 30% renewable component
 - Monoethylene glycol (MEG)
 - MEG currently made from sugarcane ethanol Developing technology for green TPA
- PepsiCo Frito-lay Sun Chips
 - Renewable polylactic acid (PLA)



The need....

...low cost fermentable sugars...

A biochemical approach to value-added products from biomass

Centre for Tropical Crops and Biocommodities

Brisbane, Australia

a university for the real world

Pretreatments...

- Dilute acid
- Concentrated acid
- Steam explosion
- Autohydrolysis
- Alkaline delignification
- Lime treatment
- Wet oxidation
- Ammonia fibre explosion
- Organosolv
- Ethanol, methanol, organic acids
- Compressed liquid hot water
- Ionic liquid processes
- Inorganic salts

- Mechanical processes
 - Grinding, milling, extrusion
- Ultrasound
- Microwave
- Irradiation
- Microbiological processes
- Pulsed power
- Solid acid catalysts
- CO2 explosion

Hydrolysis...

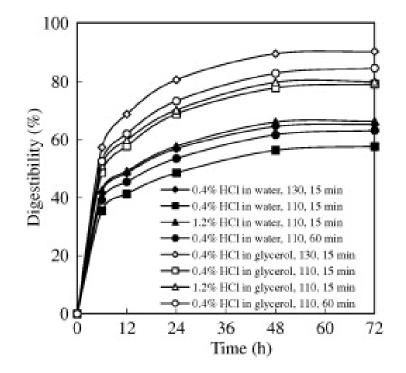

- Cellulolytic enzymes from bacteria and fungi
- Three functional classes
 - Endo-glucanases
 - Hydrolyse $\beta(1\rightarrow 4)$ bonds at random in the amorphous regions of cellulose
 - Cellobiohydrolases
 - Progressive unidirectional hydrolysis of crystalline cellulose liberating cellobiose
 - β-glucosidases
 - Hydrolyse cellobiose to glucose
- Large quantities of enzymes in complex mixtures generally required

Glycerol pretreatment...

- Developing lower cost biomass conversion processes
 - Lower energy, simple processes
 - Less expensive construction
 - Higher efficiencies
- New process based upon waste glycerol
 - Glycerol waste from biodiesel production
 - 2 wastes many valuable products
- Being commercialised in Australia (and certain other territories) by Leaf Energy

Pretreatment with acidified glycerol solutions...

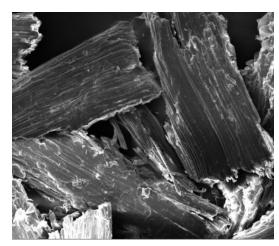
Acidified glycerol solution

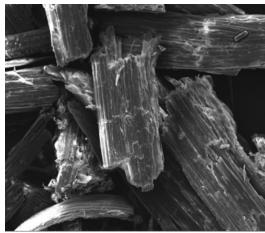

• Temperature 90 – 130 °C

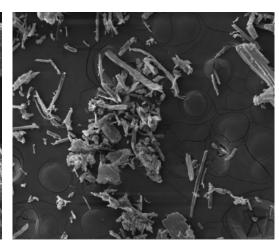
Reaction time 15 – 90 min

Water content 2.5 – 40%

• Acid conc 0 − 1.2%


- Better performance
- Lower temperatures
- Lower enzyme dosage
- Cheaper equipment materials




Lower cost sugars

SEM images of glycerol pretreated sugarcane bagasse

Untreated bagasse

Water, 1.2% HCI

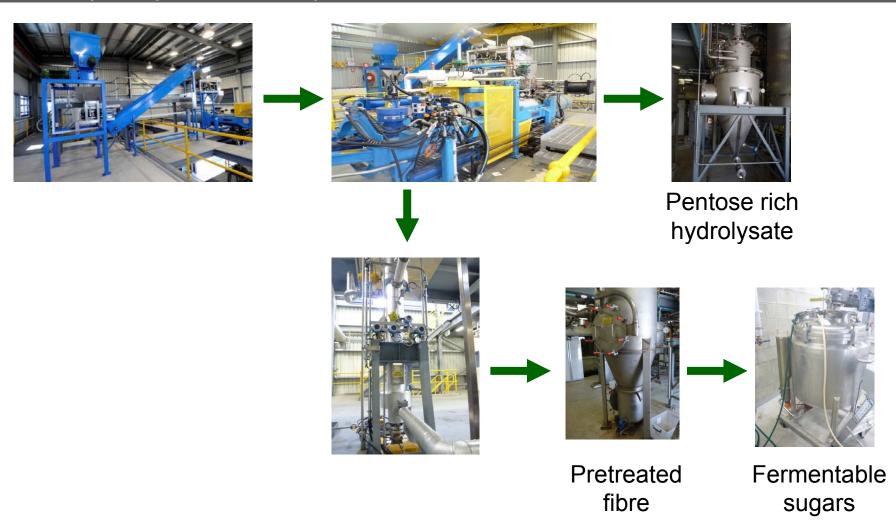
Glycerol, 1.2% HCl, 10% water

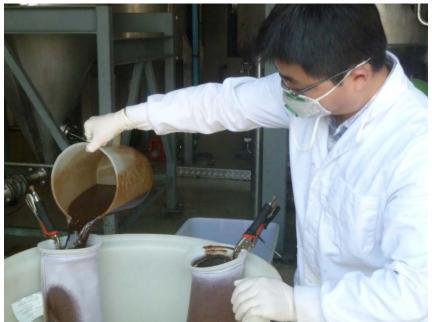
Pretreatment conditions: 130 ° C for 60 min. Samples were magnified 200 times.

Zhang et al. Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology 2013. 138.14-21

Pilot plant trials of the glycerol process

Mackay Renewable Biocommodities Pilot Plant




Pilot plant pretreatment process

Pilot trials of glycerol pretreatment process...

Solid residue

Hydrolysate

Zhang et al. Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions. Bioresource Technology 2013. 138.14-21

Key messages...

- Significant opportunities exist to establish new biorefinery industries
- Tropical regions with biomass potential will be at the forefront of this new industry
- Optimise the cost and sustainability of delivered feedstock
- Increasing demand for renewable energy and bio-products
- Novel processes will continue to drive down technology costs
- Rapid advances in microbial biotechnology are changing the way fuels and chemicals will be produced in the future

Acknowledgements

- Australian Government
 - National Collaborative Research Infrastructure Strategy
 - Super Science Fund
- Queensland Government
 - Smart State Research Facilities Fund
 - Research Infrastructure Partnerships Program
 - National and International Research Alliances Program
- Partners
 - Syngenta Biotechnology
 - Leaf Energy
 - Sugar Research and Development Corporation
 - Sugar Research Australia
 - Mackay Sugar Ltd
 - Sugar Research Institute
 - AgriFuels Ltd
- Colleagues, staff and students at QUT / CTCB

Further information: www.ctcb.qut.edu.au